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Abstract—In 2017, four hurricanes made U.S. landfalls, lead-
ing to millions of customer outages. Our previous work shows that 
weather forecast can be used to estimate the failure of transmission 
lines during hurricanes; these failure estimations can be effectively 
used in stochastic optimizations and guide preventive operation to 
reduce outages. However, the large number of possible contin-
gency scenarios, caused by hurricanes, makes preventive opera-
tion extremely computationally burdensome. The problem can be 
practically solved with only a small number of representative sce-
narios. Thus, the effectiveness of preventive operation would di-
rectly depend on the scenario selection process. This paper exam-
ines two scenario selection methods, which eliminate (a) the un-
likely and (b) the inconsequential scenarios. Simulation studies 
were carried out on IEEE 118-bus system, mapped to the Texas 
transmission network, using Hurricane Harvey wind data. The pa-
per sheds light on the effective selection of an appropriate number 
of scenarios with acceptable computational complexity. 

Keywords—Extreme events, hurricanes, power system reliability, 
preventive operation, stochastic optimization, unit commitment 

I. NOMENCLATURE 
Indices 
l Coefficient compared with limit state. 
𝑘𝑘 Transmission line. 
𝑔𝑔 Generator. 
𝑛𝑛 Node. 
𝑚𝑚 Indices of tower locations in the transmission line. 
𝑠𝑠 Scenario. 
𝑠𝑠𝑠𝑠𝑔𝑔 Segment of linearized generator cost function. 
 

 

Sets 
𝜎𝜎+(𝑛𝑛) Transmission lines with their “to” bus connected 

to node 𝑛𝑛. 
𝜎𝜎−(𝑛𝑛) Transmission lines with their “from” bus con-

nected to node 𝑛𝑛. 
𝑔𝑔(𝑛𝑛) Generators connected to node 𝑛𝑛. 
 

Variables 
𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡 Real power flow through transmission line 𝑘𝑘in 

scenarios 𝑠𝑠 at time 𝑡𝑡. 
𝐹𝐹𝑅𝑅(𝑉𝑉) Structural wind fragility at wind speed 𝑉𝑉. 
𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡
𝐿𝐿  Load loss at node 𝑛𝑛in scenario𝑠𝑠 at time 𝑡𝑡. 
𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 Real power generation of generator 𝑔𝑔 in scenario𝑠𝑠 

at time 𝑡𝑡. 
𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑂𝑂  Over-generation of generator 𝑔𝑔 in scenario𝑠𝑠 at 

time 𝑡𝑡. 

𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑠𝑠𝑠𝑠𝑔𝑔 Real power generation of generator 𝑔𝑔 in scenario𝑠𝑠 

in segment 𝑠𝑠𝑠𝑠𝑔𝑔 at time 𝑡𝑡. 
𝑃𝑃𝑚𝑚 Damage and failure probability. 
𝑃𝑃[𝐹𝐹𝐿𝐿, 𝑘𝑘] Failure probability of transmission line𝑘𝑘. 
𝑃𝑃[𝑆𝑆𝐿𝐿, 𝑘𝑘] Survival probability of transmission line𝑘𝑘.  
𝑣𝑣𝑔𝑔,𝑡𝑡 Startup variable (1: generator 𝑔𝑔 starts up at time 𝑡𝑡; 

0: generator 𝑔𝑔 does not start up at time 𝑡𝑡.) 
𝑉𝑉𝑚𝑚 Mean wind speed at the 𝑚𝑚𝑡𝑡ℎtower location. 
𝑤𝑤𝑔𝑔,𝑡𝑡 Shutdown variable (1: generator 𝑔𝑔 shuts downat 

time 𝑡𝑡; 0: generator 𝑔𝑔 does not shut down at time 
𝑡𝑡.) 

𝜃𝜃𝑛𝑛,𝑠𝑠,𝑡𝑡 Voltage angle at bus 𝑛𝑛 in scenario𝑠𝑠 at time 𝑡𝑡. 
𝜃𝜃𝑓𝑓𝑓𝑓,𝑘𝑘,𝑠𝑠,𝑡𝑡 Voltage angle at the “from” node of line 𝑘𝑘in sce-

nario𝑠𝑠 at time 𝑡𝑡. 
𝜃𝜃𝑡𝑡𝑡𝑡,𝑘𝑘,𝑠𝑠,𝑡𝑡 Voltage angle at the “to” node of line 𝑘𝑘in sce-

nario𝑠𝑠 at time 𝑡𝑡. 
Parameters 
𝑏𝑏𝑘𝑘 Susceptance of transmission line 𝑘𝑘. 
𝑐𝑐𝑔𝑔,𝑠𝑠𝑠𝑠𝑔𝑔
𝑙𝑙𝑙𝑙𝑛𝑛𝑠𝑠𝑙𝑙𝑓𝑓 Linear cost of generator 𝑔𝑔 in segment 𝑠𝑠𝑠𝑠𝑔𝑔. 
𝑐𝑐𝐿𝐿 Cost of load loss ($/MWh). 
𝑐𝑐𝑔𝑔𝑁𝑁𝐿𝐿 No load cost of generator 𝑔𝑔. 
𝑐𝑐𝑂𝑂 Cost of over generation ($/MWh). 
𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆 Shutdown cost of generator 𝑔𝑔. 
𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆 Startup cost of generator 𝑔𝑔. 
𝐹𝐹𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 Thermal/stability limit of transmission line 𝑘𝑘. 
𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡 Load at bus 𝑛𝑛in scenario 𝑠𝑠 at time 𝑡𝑡. 
LS Limit state of structure. 
𝑁𝑁𝑏𝑏 Number of buses in s system. 
𝑁𝑁𝑔𝑔 Total number of generators. 
𝑁𝑁𝑠𝑠 Number of scenarios. 
𝑁𝑁𝑠𝑠𝑠𝑠𝑔𝑔 Number of segments for the linearized generator 

cost function. 
𝑁𝑁𝑁𝑁 Number of towers in one transmission line. 
𝑝𝑝𝑘𝑘,𝑡𝑡𝑘𝑘 Probability of line 𝑘𝑘 to fail at time 𝑡𝑡𝑘𝑘. 
𝑝𝑝𝑠𝑠 Probability of scenario 𝑠𝑠. 
𝑃𝑃𝑔𝑔𝑚𝑚𝑙𝑙𝑚𝑚 Upper generation limit of generator 𝑔𝑔. 
𝑃𝑃𝑔𝑔𝑚𝑚𝑙𝑙𝑛𝑛 Lower generation limit of generator 𝑔𝑔. 
𝑃𝑃𝑔𝑔
𝑠𝑠𝑠𝑠𝑔𝑔,𝑚𝑚𝑙𝑙𝑚𝑚 Upper generation limit of generator 𝑔𝑔 in segment 

𝑠𝑠𝑠𝑠𝑔𝑔. 
𝑅𝑅𝑅𝑅𝑔𝑔 Hourly ramp-rate for generator 𝑔𝑔. 
𝑡𝑡𝐻𝐻 The time that hurricane starts. 
𝑡𝑡𝑘𝑘 The time that line 𝑘𝑘 fails. 
𝑁𝑁 Length of the investigated time period. 



𝑁𝑁𝐹𝐹 Number of time periods with different probabili-
ties of transmission line failure. 

𝑁𝑁𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛 Minimum down time for generator 𝑔𝑔. 
𝑁𝑁𝑔𝑔
𝑢𝑢𝑢𝑢 Minimum up time for generator 𝑔𝑔. 
𝑉𝑉 Given wind speed. 
𝑉𝑉10 Mean wind speed at height10m. 
𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡 Transmission line 𝑘𝑘’s status at time 𝑡𝑡 in scenario 

𝑠𝑠 (1: line is closed; 0: line is open). 
∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 Maximum value of bus voltage angle difference 

to maintain stability for line 𝑘𝑘. 
∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑛𝑛 Minimum value of bus voltage angle difference to 

maintain stability for line 𝑘𝑘. 

II.  INTRODUCTION 
Severe weather is the leading cause of power outages in the 

United States [1]. In 2017, four major hurricanes affected U.S. 
territories – Harvey, Irma, Maria, and Nate, affecting Puerto 
Rico and at least eight states, including Florida, Georgia, South 
Carolina, North Carolina, Alabama, Texas, Tennessee, Louisi-
ana and Mississippi [2]-[4]. Due to the damages of Hurricane 
Maria, nearly all the customers in Puerto Rico lost power by 
September 20, 2017, affecting more than 1.5 million people [5]. 
Hurricane Irma also led to millions of customer outages, affect-
ing 48% of the customers in Florida and 22% of the customers 
in Georgia [3]. The negative impact of hurricanes on power sys-
tem operation is not only severe, but also long-lasting. An update 
from the U.S. Department of Energy shows that still about 40% 
of customers in Puerto Rico are without electricity as of January 
10, 2018, almost four months after Hurricane Maria [6]. Thus, it 
is extremely important to improve the resiliency of power sys-
tems in face of extreme weather. 

Different strategies have been studied to reduce the adverse 
impacts of natural disasters on power system reliability. After 
the extreme event, if the system is islanded, microgrids can be 
optimally scheduled to locally supply the demand and reduce 
power outages [7]-[9]. After the damage, power system re-
sources and human resources, performing the restoration tasks 
can both be optimized to restore the system at the lowest cost or 
fastest time [10], [11]. Preventive measures can also be taken; 
the system can be hardened in the planning phase, e.g., installa-
tion of underground power lines or reinforcement of transmis-
sion towers [12]. Risks of adverse events can also be taken into 
consideration in the optimization problem in the planning phase, 
such as transmission expansion, so that a relatively robust future 
plan under extreme events is chosen [13]. In the operation phase, 
preventive actions can also be taken, since meteorological data 
is available to the power system operators. These preventive 
measures include maintenance scheduling [14] and unit commit-
ment scheduling [15], [16]. Such preventive actions, if properly 
integrated into the operational models, can drastically reduce the 
power outages. However, the challenge in finding and imple-
menting these preventive operation measures is that they require 
solving computationally intensive stochastic optimization mod-
els. These models can have a large number of possible scenarios, 
which further adds to the computational burden of the problem. 
This is especially important for the day–ahead unit commitment 
scheduling, which involves binary variables and is computation-
ally burdensome even without preventive operation. Reducing 

the number of considered scenarios can greatly reduce the com-
putation time; however, the scenarios have to be selected in a 
way that they represent an appropriately large portion of the un-
certain possibilities.  

This paper compares two scenario selection methods for pre-
ventive power system operation during hurricanes. The first 
technique is a probability-based selection method, in which only 
the scenarios with the highest likelihood are chosen. The second 
method is importance sampling [17], in which the likelihood of 
selecting a scenario is proportional to its contribution to the ex-
pected outage. The two methods are compared in a preventive 
unit commitment scheduling framework. Simulation studies 
were carried out on the IEEE 118-bus test system, which was 
mapped to the Texas transmission network. Transmission com-
ponent failure scenarios were generated using meteorological 
data of Hurricane Harvey. In order to generate the scenarios, 
first, a fragility analysis was carried out, which examines the 
structural stability of the transmission towers under dynamic 
wind loading. The analysis takes the system layout and Hurri-
cane Harvey data as input to determine the failure probability of 
all transmission towers in the system. Then, the probabilities of 
transmission line failures were calculated based on the transmis-
sion tower failure probabilities, and possible contingency sce-
narios were generated. Each scenario includes information on 
the transmission lines that fail and the time they fail, along with 
the probability of the scenario. The total number of scenarios, 
generated through fragility analysis, turns out to be very large.  

We apply the two above-mentioned scenario selection meth-
ods to construct a smaller set of representative scenarios. Pre-
ventive unit commitment models were solved on these smaller 
scenario sets, and the solutions, obtained under different sce-
nario sets, were compared. The computational complexity was 
also analyzed with respect to the number of scenarios and the 
convergence of the dispatch costs. Results show that the ex-
pected dispatch cost, including the value of lost load, converges 
to a certain level as the number of included scenarios increases. 
Moreover, the importance sampling technique functions more 
effectively compared to the probability-based selection method 
most of the time before the cost converges. It is very important 
to find the convergence point, so that an effective number of sce-
narios can be used in the preventive operation without extra 
computational burden. It is also important to use an appropriate 
method to select scenarios based on the available computational 
time in a way that is still representative of the uncertainties. 

The rest of the paper is organized as follows. Section III de-
scribes the preventive unit commitment model, and Section IV 
presents the procedure that generates and selects scenarios. Sim-
ulation results are presented and discussed in Section V, and 
conclusions are drawn in Section VI. 

III. THE PREVENTIVE STOCHASTIC OPTIMIZATION MODEL 
The preventive stochastic optimization model is based on a 

DC power flow unit commitment (UC) formulation, considering 
different contingency scenarios caused by transmission line out-
ages. The model solves for a uniform unit commitment for all 
scenarios, while dispatching generation of each unit under each 
scenario. Over generation and load loss are allowed under each 
scenario, but are penalized a with a high cost in the objective 



function. Thus, load will not be shed unless its prevention is im-
possible or extremely costly. 

The formulation of the problem is shown in (1) – (14). The 
objective function is expressed by (1), which minimizes the ex-
pected dispatch cost of the system considering generation dis-
patch, over generation and load loss under all scenarios. Gener-
ation limits are expressed by (2) – (4); generation costs were cal-
culated using a piece-wise linear cost function. DC power flow 
constraints are expressed by (5) and (6); when a transmission 
line is out, both its susceptance and thermal limit are set to 0 
using the binary integer parameter 𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡. (7) is the voltage angle 
stability constraint for each transmission line, and (8) sets the 
voltage angle of the reference bus to 0. (9) is the node power 
balance constraint, in which over generation and load loss are 
included. (10) and (11) calculates the start-up and shut-down 
variables; (12) is the hourly ramping limit for each generator; 
and (13) and (14) are the minimum up and down time constraints 
for each generator. Since contingencies are modelled explicitly, 
reserves are not modeled in this formulation. 
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⎝

⎜
⎜
⎜
⎛

�𝑝𝑝𝑠𝑠�

⎝

⎜
⎜
⎜
⎛��

� 𝑐𝑐𝑔𝑔,𝑠𝑠𝑠𝑠𝑔𝑔
𝑙𝑙𝑙𝑙𝑛𝑛𝑠𝑠𝑙𝑙𝑓𝑓𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡

𝑠𝑠𝑠𝑠𝑔𝑔
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑔𝑔=1
+ 𝑐𝑐𝑔𝑔𝑁𝑁𝐿𝐿𝑢𝑢𝑔𝑔,𝑡𝑡

+𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆𝑣𝑣𝑔𝑔,𝑡𝑡 + 𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆𝑤𝑤𝑔𝑔,𝑡𝑡 + 𝑐𝑐𝑂𝑂𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑂𝑂

�

𝑁𝑁𝑠𝑠

𝑔𝑔=1

+ �𝑐𝑐𝐿𝐿𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡
𝐿𝐿

𝑁𝑁𝑏𝑏

𝑛𝑛=1 ⎠

⎟
⎟
⎟
⎞𝑇𝑇

𝑡𝑡=1

𝑁𝑁𝑠𝑠

𝑠𝑠=1

⎠

⎟
⎟
⎟
⎞

 (1) 
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𝑠𝑠𝑠𝑠𝑔𝑔

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
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(2) 
0 ≤ 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡

𝑠𝑠𝑠𝑠𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔
𝑠𝑠𝑠𝑠𝑔𝑔,𝑚𝑚𝑙𝑙𝑚𝑚 (3) 

𝑢𝑢𝑔𝑔,𝑡𝑡𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑛𝑛 ≤ 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 ≤ 𝑢𝑢𝑔𝑔,𝑡𝑡𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 (4) 
−𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡𝐹𝐹𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 ≤ 𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡 ≤ 𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡𝐹𝐹𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 (5) 
𝑧𝑧𝑘𝑘,𝑠𝑠,𝑡𝑡𝑏𝑏𝑘𝑘�𝜃𝜃𝑓𝑓𝑓𝑓,𝑘𝑘,𝑠𝑠,𝑡𝑡 − 𝜃𝜃𝑡𝑡𝑡𝑡,𝑘𝑘,𝑠𝑠,𝑡𝑡� = 𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡 (6) 
∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑛𝑛 ≤ 𝜃𝜃𝑓𝑓𝑓𝑓,𝑘𝑘,𝑠𝑠,𝑡𝑡 − 𝜃𝜃𝑡𝑡𝑡𝑡,𝑘𝑘,𝑠𝑠,𝑡𝑡 ≤ ∆𝜃𝜃𝑘𝑘𝑚𝑚𝑙𝑙𝑚𝑚 (7) 

𝜃𝜃1,𝑠𝑠,𝑡𝑡 = 0 (8) 

� 𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡
𝑘𝑘∈𝜎𝜎+(𝑛𝑛)

−� 𝐹𝐹𝑘𝑘,𝑠𝑠,𝑡𝑡
𝑘𝑘∈𝜎𝜎−(𝑛𝑛)

+ � 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑔𝑔∈𝑔𝑔(𝑛𝑛)

 

−𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡
𝑂𝑂 = 𝐿𝐿𝑛𝑛,𝑠𝑠.𝑡𝑡 − 𝐿𝐿𝑛𝑛,𝑠𝑠,𝑡𝑡

𝐿𝐿  (9) 
𝑣𝑣𝑔𝑔,𝑡𝑡 − 𝑤𝑤𝑔𝑔,𝑡𝑡 = 𝑢𝑢𝑔𝑔,𝑡𝑡 − 𝑢𝑢𝑔𝑔,𝑡𝑡−1 (10) 

𝑣𝑣𝑔𝑔,𝑡𝑡 + 𝑤𝑤𝑔𝑔,𝑡𝑡 ≤ 1 (11) 
−𝑅𝑅𝑅𝑅𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 − 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡−1 ≤ 𝑅𝑅𝑅𝑅𝑔𝑔 (12) 

� 𝑢𝑢𝑔𝑔,𝑡𝑡

𝑚𝑚+𝑇𝑇𝑠𝑠
𝑢𝑢𝑢𝑢−1

𝑡𝑡=𝑚𝑚

≥ 𝑁𝑁𝑔𝑔
𝑢𝑢𝑢𝑢�𝑢𝑢𝑔𝑔,𝑚𝑚 − 𝑢𝑢𝑔𝑔,𝑚𝑚−1�,  

 2 ≤ 𝑚𝑚 ≤ 𝑁𝑁 − 𝑁𝑁𝑔𝑔
𝑢𝑢𝑢𝑢 + 1 (13) 

∑ (1 − 𝑢𝑢𝑔𝑔,𝑡𝑡)
𝑚𝑚+𝑇𝑇𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−1
𝑡𝑡=𝑚𝑚 ≥ 𝑁𝑁𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛�𝑢𝑢𝑔𝑔,𝑚𝑚−1 − 𝑢𝑢𝑔𝑔,𝑚𝑚�,  

2 ≤ 𝑚𝑚 ≤ 𝑁𝑁 − 𝑁𝑁𝑔𝑔𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛 + 1 (14) 

IV. CONTINGENCY SCENARIO SELECTION 
A. Transmission Line Fragility Analysis Under Hurricane 

Fragility analysis of transmission line combines three steps. 
First, the fragility analysis of transmission tower under extreme 
wind is conducted. A finite element model of the transmission 
tower is built in ANSYS. By adding a series of wind speed based 

on Monte-Carlo simulation, the damage and failure probability 
of a transmission tower can be obtained via equation (15).  

𝐹𝐹𝑅𝑅(𝑉𝑉) = 𝑃𝑃[𝑙𝑙 > 𝐿𝐿𝑆𝑆｜𝑉𝑉10 = 𝑉𝑉] (15) 
The limit state (LS) of a transmission tower is defined as the 

transmission tower’s top displacement exceeding 1.5%, 2%, 
2.5% and 3% of the transmission tower’s height. The fragility 
curves of transmission tower are calculated according to differ-
ent limit states. In this paper, the limit state of a transmission 
tower’s failure is defined when the top displacement is over 2.5 
percent of the tower’s height.   

Secondly, a horizontal wind profile is modeled to simulate 
the wind speed distribution. This paper simplifies the gradient 
wind speed as a function of radius distance. Wind speed in-
creases linearly in a 100 km range to the hurricane center. When 
it is away from the hurricane center over 100km, it decreases 
like a parabola.   

Finally, the model calculates the transmission line’s failure 
probability. The 𝑚𝑚𝑡𝑡ℎ  transmission tower’s failure probability 
for each transmission line is expressed as 𝑃𝑃𝑚𝑚 = 𝐹𝐹𝑅𝑅,𝑚𝑚(𝑉𝑉𝑚𝑚). The 
𝑘𝑘𝑡𝑡ℎ transmission line’s failure and survival probability are de-
noted as 𝑃𝑃[𝐹𝐹𝐿𝐿, 𝑘𝑘] and 𝑃𝑃[𝑆𝑆𝐿𝐿, 𝑘𝑘] separately. If a transmission line 
can survive under some wind load, all the transmission towers 
for this line must survive. Therefore, 𝑃𝑃[𝐹𝐹𝐿𝐿, 𝑘𝑘] is calculated in 
equation (16). 

𝑃𝑃[𝐹𝐹𝐿𝐿,𝑘𝑘] = 1 − 𝑃𝑃[𝑆𝑆𝐿𝐿,𝑘𝑘] = 1 −∏ 𝐹𝐹𝑅𝑅,𝑚𝑚(𝑉𝑉𝑚𝑚)𝑁𝑁𝑇𝑇
𝑚𝑚=1  (16) 

B. Generating All Possible Contingency Scenarios 
Based on the likelihood of each transmission line to fail, 

transmission contingency scenarios can be generated and their 
probabilities can be calculated. Since different lines may fail at 
different time during the hurricane, each scenario should con-
sider both the locations and time of the lines that fail. The sce-
nario generation procedure is illustrated in Fig. 1. 

 
Fig. 1. Illustration of the scenario generation procedure 

The total number of scenarios can be calculated as  

𝑁𝑁𝑠𝑠 = (𝑁𝑁𝐹𝐹 + 1)𝑁𝑁𝑏𝑏𝑏𝑏   (17) 
Each scenario is a 2-dimensional matrix, including infor-

mation about the status of each transmission line during each 



hour in the studied period. Given transmission line 𝑘𝑘 fails at 𝑡𝑡𝑘𝑘 
in scenario 𝑠𝑠, the probability for each scenario can be calculated 
as shown in (18). 

𝑝𝑝𝑠𝑠 = ∏ �𝑝𝑝𝑘𝑘,𝑡𝑡𝑘𝑘 ∏ (1 − 𝑝𝑝𝑘𝑘,𝑡𝑡)
𝑡𝑡𝑘𝑘−1
𝑡𝑡=𝑡𝑡𝐻𝐻 �𝑁𝑁𝑏𝑏𝑏𝑏

𝑘𝑘=1 .  (18) 
C. Probability-based Scenario Selection 

The probability-based scenario selection is a deterministic 
selection method; it selects the scenarios with the highest prob-
abilities. In order to implement this scenario selection method, 
all the possible scenarios are ranked according to their likeli-
hood, and a desired number of scenarios with the highest proba-
bilities are selected. This method is easy to implement, but ig-
nores the scenarios with a low probability but high impact. 

D. Importance-sampling-based Scenario Selection 
The importance sampling method is a stochastic scenario se-

lection method. In this method, the likelihood of selecting a sce-
nario is proportional to its contribution to the expected genera-
tion dispatch cost. In order to implement this method, first, de-
terministic unit commitment is solved for each possible sce-
nario, and the dispatch cost is obtained from each deterministic 
unit commitment case. It should be noted that the dispatch cost 
is dominated by its penalty component, when over generation 
and load shedding occurs. Thus, a high cost scenario should be 
interpreted as a scenario with high violations, i.e., load shedding 
and over generation. Then, considering the probability of each 
scenario, an expected dispatch cost can be calculated. Finally, 
scenarios are selected with a likelihood in proportion to their ex-
pected cost [17]. This method is more complicated than the prob-
ability-based selection method, and it adds randomness to the 
selection method. This method is not guaranteed to select the 
most representative scenarios; however, it makes it possible to 
consider scenarios that has a low probability but significant im-
pact on the system. 

V. SIMULATION RESULTS AND ANALYSIS 
A. Test System Layout and Scenario Generation 

Simulations in this study were carried out on the IEEE 118-
bus test system [18], which was mapped to the transmission sys-
tem of Texas, under Hurricane Harvey. Hurricane Harvey made 
landfall around 4:00 am and wind speed were collected every 
three hours according to data from the National Hurricane Cen-
ter [19]. The wind speed is shown in Fig. 2.  

Since the IEEE 118 test system is mapped to the Texas trans-
mission system, using the horizontal wind profile of Hurricane 
Harvey, the displacement of every transmission tower can be 
calculated, from which the failure probability for transmission 
towers can be obtained. Consequently, probability of transmis-
sion line failures during each three-hour period can be calculated 
[15]. Results show that the hurricane was able to cause transmis-
sion line failures only in the first three-hour period. During this 
period, 22 lines may fail with different probabilities; the 22 lines 
and their “from” and “to” buses are shown in Fig. 3 and their 
failure probabilities are shown in TABLE I. In this table, the 
lines are denoted with their “from” and “to” buses. With 22 lines 
possible to fail in one period, according Equation (17), a total 
number of 4,194,304 scenarios can be generated. 

 
Fig. 2. Wind speed of Hurricane Harvey 

 
Fig. 3. Test system layout 

TABLE I  
LINES THAT MAY FAIL DURING THE FIRST THREE-HOUR PERIOD 

Line Probability Line Probability 
10-9 0.9493 114-115 0.9888 
9-8 0.9583 114-32 0.9775 
8-30 0.4877 27-32 0.9858 

30-17 0.7417 27-25 0.9995 
17-18 0.9552 26-25 0.5973 
17-113 0.5535 23-25 0.4235 
32-31 0.9596 23-32 0.1364 
29-31 0.9982 23-22 0.8777 
28-29 0.9953 21-22 0.9355 
27-28 0.9923 20-21 0.8873 
27-115 0.9867 26-30 0.5106 
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B. Scenario Selection Using the Two Methods 
In order to run the stochastic optimization problem effi-

ciently, a scenario set which includes a small number of scenar-
ios, selected from the total 4,194,304 scenarios should be used 
for each stochastic optimization problem. 42 scenario sets were 
obtained in this study, including 7 obtained using the probabil-
ity-based methods and 35 obtained using the importance sam-
pling method. 

With the probability-based selection method, a desired num-
ber of scenarios can be selected quickly. In this study, seven sce-
nario sets were selected, each of which containing 1, 4, 7, 10, 20, 
30 and 40 scenarios, respectively.  

The large number of scenarios makes employment of im-
portance sampling extremely computationally demanding. This 
is because, if importance sampling is used, a unit commitment 
problem needs to be solved under each scenario. Although each 
unit commitment problem just takes a few seconds to solve, 
solving more than 4 million scenarios will take months. In order 
to reduce computational burden, scenarios with probabilities of 
less than 0.005% were removed first. This way, the number of 
scenarios was reduced to 1,492. Then deterministic unit commit-
ment problems were solved under each of the 1,492 scenarios 
using the model described in [20]. Using the individual dispatch 
costs and the scenario probabilities, the expected dispatch cost 
was calculated, and contribution of each scenario to the expected 
cost was obtained. Due to the stochastic nature of this selection 
method, 5 scenario sets were obtained using importance sam-
pling for each of the seven numbers of scenarios mentioned 
above, so that the stochastic optimization can be carried out un-
der different scenario sets with the same number of scenarios to 
make the results more credible. 

C. Economic Benefit Comparison 
In order to compare the effectiveness of scenario selection, 

the preventive unit commitment model described in Section III 
was solved under the 42 scenario sets, respectively and the solu-
tions were obtained. Then, each of the 42 unit commitment so-
lutions was adopted for economic dispatches under the 1,492 
scenarios mentioned in Section IV-A, and an expected dispatch 
cost considering probabilities of the 1,492 scenarios was ob-
tained for each unit commitment solution. The lower the ex-
pected dispatch cost, the more economical the unit commitment 
solution is in face of the hurricane. Again, note that the value of 
lost load is included in the dispatch cost, with lost load and over 
generation penalized at a high price. As the dispatch cost is dom-
inated by this penalty component, a cheaper solution really re-
flects a more reliable solution. 

The expected dispatch costs of the 42 cases are shown in Fig. 
4. The expected dispatch costs decreased with the increase in the 
number of scenarios, and they converged to about $33.3 million 
with 20 or more scenarios, no matter which scenario selection 
method was used. When only one scenario was selected, the 
number of scenarios was so small that no method could guaran-
tee selecting a representative scenario, although the probability-
based method showed slight advantage in this case. However, 
when 4 or 7 scenarios were selected, the importance sampling 

method showed an obvious advantage, and the expected dis-
patch costs from the importance sampling method were much 
lower than those from the probability-based method. The results 
suggest that the importance sampling method is generally more 
effective before the expected cost converges, but they are very 
close in effectiveness once the number of scenarios is large 
enough so that the expected dispatch cost converges. 

 
Fig. 4. Comparison of expected cost considering all possible scenarios 

 

Fig. 5. Solution time comparison under different numbers of scenarios 

D. Computational Complexity Comparison 
The computational complexity of the preventive stochastic 

optimization model is highly correlated with the number of sce-
narios considered. The solution times of the 42 cases are shown 
in Fig. 5, with a light-blue-colored area. Since 6 cases were 
solved under each number of scenarios, an average solution time 
was calculated for each of the 7 numbers of scenarios. It can be 
seen that the solution time increases significantly with the in-
creasing number of scenarios, although randomness in solution 
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time existed with the same number of scenarios. Thus, it is very 
important to find the number of scenarios at which the expected 
dispatch cost converges, so that a cost-effective unit commit-
ment solution can be found without taking unnecessarily long 
computation time. 

VI. CONCLUSION 
This paper compared two contingency scenario selection 

methods, namely, probability-based and importance sampling 
methods, for stochastic preventive operation in face of hurri-
canes. Results show that the expected dispatch cost, including 
high penalty costs for lost load and over generation, obtained 
under each unit commitment solution, decreases with the in-
creasing number of scenarios. The expected dispatch cost con-
verges to a certain level as the number of scenarios increase. 
With an extremely small number of scenarios, such as one sce-
nario, neither of the two methods is guaranteed to select a repre-
sentative scenario set. With a relatively small number of scenar-
ios, the importance sampling method is more effective; but when 
the number of scenarios is large enough for expected dispatch 
cost to converge, both scenario selection methods are similar in 
effectiveness. With similar effectiveness, the probability-based 
selection method is preferred, because it is much easier to im-
plement compared to the importance sampling method. The 
computational complexity is highly correlated to the number of 
scenarios considered; thus, it is ideal to use the number of sce-
narios right at the convergence of expected dispatch costs. How-
ever, in case that only a relatively small number of scenarios can 
be chosen due to the limitation of computational resources, the 
importance sampling method is more effective than the proba-
bility-based method in general. 
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